Signal and Noise: Garbage in Garbage out

O. John Semmes

Director, Center for Biomedical Proteomics
Department of Microbiology and Molecular Cell Biology
Virginia Prostate Center
Eastern Virginia Medical School Norfolk, VA

Eastern Virginia Medical School Discovery Laboratory

THINGS WE CAN DO TO MAKE THE PATTERNS BETTER

- 1. Some things to do before the Mass Spec (TOF-tube)
- 2. Some things to do after the Mass Spec (TOF-tube)

Achieving Reproducibility in SELDI

- Get a gatekeeper for experimental design and interpretation.
- 2. Use "standard" samples; external (spiked) proteins, internal proteins, serum sample for QC.
- 3. Synchronization/optimization of instrument output using the QC sera. Laser/detector settings.
- 4. Constant monitoring and adjustment of parameters.
- Automation of sample processing steps.
- 6. Find out what the peaks are! (robustness)

Table 1. QC spectra criteria

Protein	Signal to Noise Ratio (S/N)	Resolution
Insulin	N/A	600
IgG	700	N/A
Peak1: 5906 ± 0.2%	>40	>400
Peak 2: 7768 ± 0.2%	>80	>400
Peak 3: 9289 ± 0.2%	>80	>400

Quality control assessment of the PBSII is based on signal to noise ratio (s/n) and resolution. The table provides the s/n and resolution required for each QC protein used in Phase IA for a site to proceed to Phase II.

Table 2b Inter-Lab variability

		Mass	Intensity	S/N	Resolution		
Peak 1	average	5906.47	26.57	163.06	460.73		
	stdev	6.70	9.67		107.72		
	CV	0.0011	0.36		0.23		
Peak 2	average	7768.61	35.94	242.75	505.54		
	stdev	8.41	6.25		82.77		
	CV	0.0010	0.17		0.16		
Peak 3	average	9289.18	30.96	244.03	439.28		
	stdev	9.89	4.70		77.35		
	CV	0.0011	0.15		0.18		

Summary of Biomarker Discovery and Identification

CENTER FOR BIOMEDICAL PROTEOMICS

Things to do after the tube

Analysis of Source of Variation

- 1. Metrologic Analysis of SELDI-TOF Process.
- 2. Spectral Analysis of Output.

Proteomics Using SELDI Technology

Surface Enhanced Laser Desorption

←Surface
Chemistries Each chip
binds a specific set of
proteins based on the
chromatographic surface
of the ProteinChip®.

←Protein Chips

Each spot on the chip will contain sample from a control or diseased/treated source. The spots are analyzed separately and a mass spectra is created for each spot representing the proteins bound to the chip surface.

ProteinChip Technology: Protein Binding

- Crude sample is placed (and processed) on a ProteinChip Array
- Proteins bind to chemical or biological "docking sites" on the ProteinChip surface

ProteinChip Technology: Washing Reduces Non-Specific Binding

 Non-binding proteins, salts, and other contaminants are washed away, eliminating sample "noise"

ProteinChip Technology: Addition of EAM

EAM (Energy Absorbing) Molecule) is applied to facilitate desorption and ionization in the ProteinChip Reader

Desorption Surface

Limited Inefficient Desorption

Nano-Scale Surface Polishing

Peak Jitter Between Single Laser Shots Reduced Resolution

Automatic Dejitter

Denoising Filters

Trace Add-Back Filters

Model based target filtering

Trace Add-Back Filters

Peptide standards with SIMS-resolved isotopic structure

Best approach may involve Internal Standards with known isotope structure

Placing external proteins in data valleys

Spectral Analysis

Detector Overload

Effect of Detector Overload On Baseline

Variance Rescaling Effect of Default Moving Average Filter

Mass dependence of peak width and default MAV

Mass Dependence of Variance

Variance Rescaling: Stationary Noise, Increased Sensitivity

Putting it all together

Enhanced Resolution of Calibrant Peaks

Enhanced Resolution in Pooled Serum

Default

BKG-Sub, MAV, Var-Rescale

Summary

Improving the processing of data output can dramatically improve sensitivity, resolution and reproducibility.

The Fold improvement may equal that of the "High resolution" SELDI-QStar.

Lookout for default Settings

Eastern Virginia Medical School Biomarker Discovery Laboratory

Investigators

John Semmes, Ph.D.
John Davis, M.D.
Jose Diaz, M.D., Ph.D.
Rick Drake, Ph.D.
Christine Laronga, M.D.
Paul Schellhammer, M.D.
Jeffery T. Wadsworth, M.D.

Fellows

Alberto Corica, M.D.
Daniel Holterman, Ph.D.
Gunjan Malik, Ph.D.
Lining Qi, Ph.D.

Staff

Diane Brassil
Lisa Cazares
MaryAnn Clements
Tarek Kendil
Brian Main
Michelle Moody
Michael Ward

Biostatistics/Computation

WMRI
William Cooke, Ph.D.
Dasha Malyrenko, Ph.D.
Denis Manos, Ph.D.
Michael Trossett, Ph.D.
Eugene Tracy, Ph.D.